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ABSTRACT

The tensile load-elongation behavior of eight-strand ropes has been studied by
structural modelling in which the rope tensile loac, interstrand pressures, and strand
relative movements as functions of rope tensile strain are determined based on the

rope geometries before and after deformation.
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1 INTRODUCTION

Synthetic ropes are structures which offer flexibility and high tensile strength. They
are widely used in many applications including marine towing and mooring. With
the development of rope manufacturing technology, synthetic ropes are available in
many structural types. Among them, three strand twisted, double braided, and

eight strand plaited ropes are the most commonly used ones.

Eight strand plaited synthetic ropes have th: advantages that no torque, and
thus no rotation is induced when they are stretched, by virtue of their axial sym-

metric structures,

In order to study and characterize the mechariisms of rope deterioration, and to
predict the mechanical behavior of eight strand ropes, it is necessary to develop valid
models for the eight strand ropes under different loading conditions. Such models
can provide useful information on rope construction parameters which give desired
rope mechanical behavior. As the first step, the tensile load-elongation behavior
of eight-strand ropes has been studied by a structural modelling in which the rope
tensile load, interstrand pressures, and strand relative movements are determined
as functions of rope tensile strain and based on the rope geometries before and after

deformation.

2 GEOMETRY OF EIGHT-STRAND ROPES

2.1 Geometry of the Strand Axis

To facilitate the understanding of the structure ¢f eight strand ropes, a short rope
was made in the laboratory, using a small circular-cross-sectional double braided
rope for each of the eight strands. Photographs of this rope and other two com-

mercially made eight strand ropes are shown in Figure 1. By virtue of symmetry,



Figure 1: Photographs of eight strand ropes. (a) A hand-made structure, (b) A

new rope, (c) A used rope



only one of the eight strands of each rope needs to be studied. In examination of
the path of a single rope strand in a load-free s:ate, it was noted that the projec-
tions of the strand axis on two perpendicular planes ciosely follow the wave form
of sinusoidal curves, as illustrated in Figure 2. The sine waves on the two planes,
XOZ and YOZ planes, both have the same period, but with different magnitudes
and phase shifts. For the coordinates selected in Figure 2, the strand path for an

unstretched eight-strand rope can be representec as:

X, = X u4c 8in 2W—(Z’§t£) (1)

2nZ,

Y, = Yoaz cOS

(2)

where H is the length of one period of rope, Xmaz, Yona: are the maximum magnitude
of X, and ¥, and B is the phase shift for X,, which can be estimated from Figure

3 as

aX. = ‘zzxmz (3)

B = with tan & =

L}
sin a 9Z, |z.-.5

where r, is the radius of the strand.

When a rope is stretched at the two ends, the rope structure must adjust itself

to satisfy two constraints:

¢ The boundary condition: the rope length raultiplied by the rope strain must
be equal to the rope stretch length; and

o The equilibrium condition: the total strand force components in the axial

direction of the rope must remain constant along the rope.

As can be expected, when the rope is stretched the strand path functions be-

come very complicated and may no longer be represented by the simple sinusoidal
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Figure 2: Geometry of rope strand axis



Iz,

’The accompanying strand

The strand being

considered

X

2 Rg

-—

"Highest" point

(ie. Y =y ___)

s “max

Figure 3: Determination of phase shift B



functions. One method of describing the stretched strand path is to use Fourier

series representations, given as:
X, = L _[Busin(kAZ,) + Cycos(kAZ,) (4)
Y, = fk mO[D, sin(kAZ,) + Ey cos(kAZ,)] - (5)

whére A, By, Cy, Dy, and E, (k =0, 1, 2,...) are functions of the rope strain, to
be determined by the above two conditions. In practice, however, it is impossible
to use infinite series to describe the strand path in the calculation. When using the
first few terms in the series for X, and Y,, the higher frequency terms introduce
undesirably high noise in the derivatives of X, and Y, functions, and thus this

approach was found inappropriate.

The strand path functions used in this model are defined as follows

X.(2) = Xmaz sin@ (6)
Vi(2) = Ymascos 2o (7)
‘fi’ —1ta() o Z()= [T +a()d (8)

where z is the local coordinate of the strand axis fixes to the material points, and
is directly related to the global axial coordinate Z, by Eq 8, B is the phase shift
given by Eq 3, H is the length of one period of rope at load-free state, and X,,;;,

Yomaz, and ¢,(z) are explained below.

In the strand path functions, X, ., and Y., are the magnitudes of the X, and
Y, waves, determined from rope radius (r,) and the strand radius (r,), which in

turn are functions of rope strain (¢,) and rope lateral contraction ratio (u):

Ximas(er) = ro(er) = 3r,(6) ()



sz(el‘) = rr(fr) - r:(fr) (10)
re(er) = (1 - pe,) ro (11)
ro(e) = (1 — pe) ro (12)

Where ro and r are rope and strand radii at load-free state respectively. In
Eq 12 the strand is assumed to have the same relative amount of lateral contraction
as the rope structure does, but in reality one may expect that the rope and the
strands contract differently when stretched. Tle lateral contraction ratio (1) for
rope structures has been observed to be within the range of 0.3 to 1.0, varying with
rope strain level and rope structures. In this model, two forms of lateral contraction

ratio expressions are used:

1. constant u: e.g.: u= 0.3, or u= 0.6;

2. 4 as an sxponential function of rope strain:
b= poc—tr/(o
where yq is the initial lateral contraction ratio and ¢, is a constant.

€s(2) in the strand path functions (Eq 8) is the “axial strain” as a function of rope
strain (e,) and axial position (z). It is determined by the model from equilibrium
and boundary conditions. To help understand the definition of this axial strain
€a(2), we consider stretching one rope period on which some lines were drawn in the
load-free state at constant intervals (Figure 4). In the load-free state, the parameter
z is identical to the strand axial coordinate Z,. But when the rope is stretched, the
coordinate Z, of a cross-section will change with the movement of the cross-section.

However the parameter for that cross- section will not change, as z is associated

9
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with and will move along with the particular crcss-section to it. If we measure the
new spacing between lines (Figure 4) we may express the spacing as a function of

parameter 2, and therefore we can define an axial strain function €a(2) as:

eafz) = lim S =8 _ 42 (13)

A—0 A dz
Integrating the above equation once gives:
4
Z,(z) = j; 1+ e4(2)]dz (14)

which is Eq 8.

From the boundary condition, it is necessary that

e.H = Z,(H) — H = stretch length (15)
Putting

ZH) = [+ (2l =H+ [ el 16)

of ._o[ €a(2)]|dz = 060242 (

into Eq 15 gives that:

¢, = %foﬂ &a(2)dz o

which indicates that the average value of the axia! strain €2(2) must be equal to the

rope strain.

Although the exact form of the axial strain function €,(z) is determined by
the equilibrium condition, it is impossible to find an analytical solution to €.(2).

However, €,{(z) can be approximated as close by us desired.

The axial strain function €,(2) used in this model is assumed to be a linear
function of rope strain and a piecewise linear function of position parameter 2, as

shown in Figure 5. In the expression for €s(2), a0, @y, .. a¢ are constants to be

11
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found (or adjusted) by the model automatically. Due to the structural symmetry

of eight-strand ropes, ¢,(z) is a periodic function in z with a period of H/2.

The form of axial strain function €a(z) shown in Figure 5 has been found to
be satisfactory for several eight'-stra.nd ropes with different structural parameters,
and to be a good compromise between accuracy and computational efficiency. It
is possible, however, to further improve the accuracy by dividing ¢,(2) into more
pieces of straight lines, and by letting a;'s in ¢,(2) be functions of rope strain instead
of being independent of rope strain (i.e. adjust «;’s for each rope strain step).

In this model, the derivatives of strand path finctions and strand length are also

needed. First, a “dot” operation is defined which denotes taking derivative with

respect to the parameter 2. Therefore

, dX, 2r 2r
X, = T = XM’E cos E(z + B) (18)
. _dY, 2 . 27
Y, = Fral —Ym,H sin Hz (19)
Z, = ‘Z‘ = 1+ ¢(2) (20)

Then the derivatives of strand path functions with respect to strand axial coordinate

Z, are given from:

dX, _dX,dz _ X, (21)
dZ,  dz dZ, 2

dz, - dz dz,  Z, (22)
The derivative of strand length S,{z) is given by:
ds, _ds, dz _ 1S, (22)

dZ,  dz dZ, 7, dz

13



By definition, dS,/dz in above equation can be expressed in terms of X,, ¥,, and

Z. as:

‘fiil = \/X,’ + 1;',’ + Z} (24)

and the strand length as a function of the paramneter z is obtained by integrating

Eq 24:

2 d8§,
0 dz

S.(2) = dz (25)

S,(z) given by Eq 25 cannot be put in the form of an elementary function, and

it is evaluated by numerical integration.

The tangential vector of the strand axis will 2e needed to define the plied yarn

path and load calculation. They are given by:

dX, dS, . .dS,

[} S dZ./dZ. - l/ dz (26)
dY, dS, . ,dS,

v dZ./ 4z, Y% (27)
dZ, .dS, . ,dS,

. dZ,/ dz, & dz (28)

2.2 Geometry of the Plied Yarn Axis

The location of a plied yarn at a given z (the local coordinate) can be found from

(Figure 6):
(29)

where ﬁ, and R, are, respectively, the plied yarn path vector and the strand path

vector given by:

14
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Figure 6: Geometry of the plied yarn axis
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R = X,i+Y,]+Z,k (30)
R =Xi+Yj+2Zk (31)

and ﬁ; is the relative vector between the plied yarn and the strand axis at given =z.
Because the plied yarns are twisted around the strand axis to form the strand, the
relative vector IE;, between a plied yarn and the strand rotates about the strand axis
as it moves along the strand axis. In other words, the direction of I-f;, at a given 2
can be determined from the plied yarn twist per period of strand, provided that the
direction of ff; at z = 0 is known. It is also necessary to define a reference direction
from which the rotation angle (¢) is to be measured, and then to calculate ¢ at that
location. Unlike the case of three strand ropes where the normal vector of strand
axis pointing to the rope central axis is usually used as the reference vector, the
structure of eight-strand ropes does not allow the use of this vector as the reference
vector because it is not always pointing to the axis of the rope. In this model, a
vector is chosen which is always on the plane perpendicular to Y-axis and on the
plane of the strand cross-section, as indicated by the vector R, in Figure 6. The

constraints on R,, when written in equation forims, are:

-

R,-7=0 (32)
and
R,-T,=0 (33)

Since the reference vector R, is only used to determine the starting position for
measuring the rotation angle ¢, the magnitude cf ﬁ, is not important, therefore we

may choose;
Ry =1 (34)

16



Ruy =0 (55)
Ryy=-——=—— (36)

to satisfy Eq 32 and 33. Notice that the magnitude of R, thus defined is dimen-

sionless.
The rotation angle ¢ can be calculated from the strand length §,(z) and the
strand twist per period of strand (¢} as:

#(z) = 21rt§"(—(;)) + ¢o (37)

where ¢ is the rotation angle ¢ at z = 0 and S,( H) is the strand length per period.

From Figure 6, R.;,, the relative vector between the plied yarn and the strand,

can be determined from the following three equations:

B =r, (38)
R.T,=0 (39)
fé; R, =cos¢ (40)

where r, is the radius of the plied yarn helix layer. For the eight-strand ropes used
in this study, each rope strand consists of nineteen (19) plied yarns located in three
layers: the core layer, the sublayer, and the surface layer. If plied yarns are assumed
to have circular cross-sections packed concentrically about the strand axis as shown
in Figure 7 and each plied yarn is identified by ar. ID number j given in that figure,

the helix radius r, is seen to be:

) for core layer (j = 0)
r, = %R. for subla.}'el‘ (1 S j S 6) (41)
iR, for surface layer (7 < j < 18)

17
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Figure 7: Plied yarn packing pattern across a strand at z = 0. Yarn ID number, j,

is shown with each yarn.
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and the rotation angle (¢) at z = 0 can be calculated as:

(7 -1)
(-7

+1 for sublayer {1 < j < 6)

$o = (42)

- TC I T TE ]

for surface layer (7 < 5 < 18)

However, these expressions are easily modified to accommodate strand structures

with number of plied yarns other than nineteen zs in the above case.

From Eq 32-42, the relative vector, ﬂ’;‘, can be determined for each plied yarn
at any strand cross section indicated by the local coordinate z. Details of such

calculation are provided in Appendix A.

After calculating the relative vector ﬁ;, the components of the plied yarn posi-

tion vector B, are calculated according to Eq 29 as:

X,=X,+ R 43
P ok

Y,=Y,+ R, (44)
Z,=Z,+R, (45)

Notice again that E, 18 a function of plied yarn I} number, the axial position along
- the yarn, and the rope strain. It is evaluated nuraerically then stored in arrays for

later use.

Derivatives of the plied yarn coordinates, X 2 ];’,,, and Z,, are calculated us-
ing the Forward Difference Rule of numerical differentiation which gives an error
proportional to the square of the step size A for an equation y = y(z):

& = —Visz + 441 — Ui
' 2A

(46)

where y; is the value of y at £ = {A and g is the value of dy/dz at z = 1A,

The derivative of plied yarn length function 5,(z) is given by:

19



45 _

4z VX2 + Y3+ 22 (47)

and therefore the plied yarn length per period of strand is:

H dS,
SP"" o Edz . (48)

The X, Y, and Z-components of plied yarn tangential vector II_‘; to be used for

load and pressure calculations are given by:

. dS

Tpe = X,/ "J'zg (49)
-, dS

Tpy = p/ E’,'g (50)
- dS

Tos = p/ d_: (51)

3 ROPE TENSILE BEHAVIOR

3.1 Strain Distributions

When the spatial location of plied yarns as a function of rope strain is defined and
available, it is straightforward to calculate the strains across a particular strand

cross-section, or the strains along a plied yarn for some limiting cases.

In the case where the friction between plied yarns is neglected, the axial force,
and thus the axial strain, of a plied yarn must be constant along the yarn from
the consideration of equilibrium. The strain ¢, for a given plied yarn at rope strain
equal to ¢, in this case is simply given by:

- _5(6) -5 =0)
? Sp(er = 0)

(52)

where S, is the plied yarn length per period of strand when the rope is subjected

to a strain ¢, as indicated in the equation.

20



The other limiting case is when the friction between plied yarns is so high that no
axial relative motions between plied yarns may occur. If we consider an infinitesimal

segment of plied yarn AS, in the cylindrical coordinate pfz system where
p=vXi+Y? (33)
and
Y
8= —
tan X (54)

we may express AS, in terms of § as:

ds
AS, = —2A8 (55)

where 8 is the f-coordinate in a pfz system, or called the base angle. For the case of
no relative motion between plied yarns, the base angle increment A# for the plied
yarn segment AS, will remain constant when the rope is stretched. Therefore the

local strain for this plied yarn segment is given by:

ds,
. _ A5 —AS)e=0) @
? ASy(e =0) ds,

© _ (56)

Using Chain Rule for differentiation, we have:

ds, dS,dz _dS, 1

dz,” dz dz,  dz 3, (57)

dé _dfdz di 1 '(58

dz, ~ dzdZ, dz3, )
From Eq 54 we have:

df _ dlarctan(Y,/X,)] XY, - XY, (59

dz dz X2+ Y} )

21



where X, and Y, are strand path coordinates.

Putting the expressions for X,, Y,, X,, and Y, derived earlier into Eq 59, it can
be seen that df/dz is a function of local coordinate z only, independent of the rope
strain €,. Therefore from Eq 57-59, the plied yarn strain expression Eq 56 may

reduce to simply:

ds,
dx

El"'__sl‘tr -1 (60)

ds L,:D

-9

Figure 8 shows the plied yarn strain variation across the strand cross-section
at z = 0, for both cases of no friction between plied yarns and no relative motion
between plied yarns. Figure 9 is an illustration of the plied strain variation along

plied yarns in different layers of a strand in an eight-strand rope.

3.2 Rope Load-Strain Relations

From the load-extension curve for a tensile test of plied yarns, the modulus of the

plied yarns E, can be found as:
E,=— (61)

where P, is the plied yarn load at strain ¢,.

In general, E, is a function of plied yarn strain ¢,. Although it does not make
much difference in the complexity of a numerical model whether E, is a constant
or a complicated function of ¢,, we will assume here that E, is a known constant in

the model. -

The Z-component of the plied yarn force P,(z) at a given location z can be
calculated from the local plied yarn strain ¢,, the Z-component of the plied yarn

tangential vector T, for that yarn, and the plied yarn modulus E,:

22
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B(2) = Epe, T, for ¢ <¢ (62)
2 (2) =
for € > ¢

where ¢ is the breaking strain of the plied yarns.

The force in the rope axial direction of a strand at z can be obtained by summing

the Z-comi)onents of all plied yarn forces in the :ross-section:
P(z)= 3 Pl2) (63)

all yarns

In Eq 62 and 63, it is implicitly assumed that a plied yarn, when strained beyond
the breaking point, will not carry any load at that location, and that the breakage
will not alter the rope structure by any means. Clearly, these assumptions are not
realistic and thus limit this model to the prediction of the rope behavior only up
to the initiation of damage due to applied load/stretch. Despite this limitation, the

model covers almost the whole range of rope loading/strain of practical interest.

In order to calculate the tope ioad at a cross-section, we need to know the strand
forces in the rope axial direction in that cross-se:tion for all the eight strands. By
symmetry, at a cross-section there are four strand pairs in each of which the two
strands have the same strain distribution and the same load. By syminetry again,
we .ca.n find the corresponding locations in the strand we have considered for the

four different strands in the cross-section. The rcpe load P,(2) is then given by:
H H
P.(z) =2[P,(z) + P(z+ B) + P,(z + T) ++P{z+ i B)] (64)

where B is the phase shift defined in Eq 3, and H is the rope length per period of

strand.

As mentioned earlier, the rope load P,(z) should be constant along the rope
axis. In this model, this equilibrium condition is satisfied by proper adjustment of

the strand axial strain function, €,(z). Details o this adjustment are provided in

25



Appendix B. Figure 10 and Figure 16 show the load vs. strain characteristics of
an eight-strand rope based on three assumed latera] contraction ratios: u = 0.3,
# =06, and u = 0.3]1 + ezp(—€,/0.2)], for both cases of “no friction” and “no

relative motion”.

3.3 Inter-Strand Pressures

The spatial configuration of a strand in an eight-sirand rope is not in self-equilibrium
state, and is supported by other strands via contact stresses. The contact stress,
or the inter-strand pressure, is responsible to a great extent for the rope internal

abrasion which shortens the life of eight-strand ropes considerably.

Due to the complexity of the structure of eight-strand ropes, it is very difficult
to determine the pressure field in an eight-strand rope. However, in most cases we
are only interested in certain locations in the rope where high inter-strand pressure
is expected. From the rope geometry (see Figure 1 and Figure 2), it is easily seen
that the maximum inter-strand pressure occurs near the region where the bending
curvature is maximum (i.e. z =0, H/2, H, ...). [n order to estimate this pressure,
we first consider a segment of strand between z — 1/4H and z = 3/4H, and
determine the resultant force of external pressures on this strand segment, when
the rope is stretched. Figure 11 shows the free bo dy diagram of the strand segment
under consideration, in which & is the resultant force of pressures exerted on the
segment, and F, and f‘g are strand forces at z = 1/4H and z = 3/4H respectively.

Force equilibrium requires that:

—

R+F+F=0 ' (65)

or
R =F;+ F, (66)

26
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Figure 11: Free body diagram of a strand segment for determination of resultant

contact force R
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- R, =F,+F, (67)
-R3=F13+Fh (68)

In Eq 66, F\., the x-component of the strand force at z = 1/4H, can be cal-
culated directly from the plied yarn strains (e,), plied yarn modulus (E,), and the
x-component of the local tangential vector of plied yam path (T,,):

Fi, = > &, T,s (69)

yams in strand

Similar expressions like Eq(78) can be obtained for other components of F; and F,.

From the contact force ﬁ, the contact pressure can be calculated if the contact
area and the compressive properties of the st-and are known. For two isotropic
elastic cylinders contacting each other at an.angle, the contact area will be an
ellipse and the maximum pressure occurs at the center of contact which equals to
1.5 times the average pressure. If this relationship is used to estimate the inter-

strand pressure, we will have:

_15P
T mab

(70)

where P is the contact (applied) force, (7ab) is the contact area with a and b being

the minor and major axes of the ellipse.

From the geometry of eight-strand structure, it can be seen that the y-component
of the resultant force R is primarily supported by the two strands crossing under
the strand segment being considered. The contact area is measured from a new rope
as approximately g = 0.5r,, and b = r, where r, is the strand radius. Therefore the

maximum pressure between two crossing strands is given by:

1.5-05- R,

Pcrossing = #(0.5R,)Rs (71)
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Similarly it is observed that the x-component of K is mainly provided by the strand
going parallel to the strand being studied. The contact area for this force component
is larger compared with the above case and is roughly given by a = 0.5r, and b = 2r,.
Since this part of strands is on the rope surface, the pressure here will be called “the
inter-strand pressure between two parallel strands outside the rope”, to distinguish
it from the pressure between two parallel strands inside the rope. The maximum

pressure between two parallel strands outside the rope is determined from:

1.5R,
Pparallel, outside = 7(0.5R,)(2R,) (72)

Another region with high inter-strand pressure, as mentioned earlier, is between
two parallel strands inside the rope which support the strand analyzed above. The
contact force between two parallel strands inside the rope can be estimated by
considering a segment of strand between z = 1/4.4 and 3/4H, on which the forces
have been determined, and the two strands under it. Figure 12 shows the simplified
force-equilibrium diagram, from which the contact force due to one crossing strand

is approximately given by:

Feontact = 0.5R, Tul.:x.sn./.inq (73)

Note that there are actually two strands going above the two strands inside the rope,
therefore the contact force is twice as large as that given by Eq{82). If we again
assume the contact area is an ellipse with a = r, and b = 4r,, then the inter-strand

pressure between two parallel strands inside the rope is:

' 15-2-0.5R, T,
Pparallel, inside = #(0.5R,)(2R,) (74)

The inter-strand pressures between crossing and parallel strands are plotted in

Figure 13, Figure 14 and Figure 15 as functions of the rope strain.
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Figure 12: Simplified equilibrium diagrams for the contact forces. -~y is the angle

between the two sets of crossing strands.
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Figure 13: Inter-strand pressure between crossing strands. (r, = 29 mm, r, = 7.5

mm, H = 120 mm, ¢t = 2.31 turns/period, E, = 11,490 N/unit strain, g = 0.3).
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Figure 14: Inter-strand pressure between parallel strands outside rope. (r, = 29
mm, r, = 7.5 mm, H = 120 mm, ¢ = 2.31 turns/period, Ey, = 11,490 N/unit strain,
i = 0.3}.
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Figure 15: Inter-strand pressure between parallel strands inside rope. (r, = 29 mm,
re = 7.5 mm, H = 120 mm, ¢ = 2.31 turns/period, E, = 11,490 N/unit strain,
p=0.3). '
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It can be seen that very high pressures are built up in eight-strand ropes, espe-
cially between crossing strands and between paraliel strands inside the rope, which

cause severe wear damage to such rope when subjected to cyclic tensioning.

3.4 Relative Slippages between Strands

The relative slippage distance between strands is as important as the inter-strand
pressures, as both are responsible for the internal abrasion of eight-strand ropes.
Generally the relative slippage between strands can be considered as composed of
two basic relative motions: strand sliding on each other, and strand rotation about
different pivoting points. Because of the symmetrical property of eight-strand ropes,
the slippage due to strand relative sliding is not expected in certain rope cross-
sections. In the regions where high inter-strand pressures occur as considered in

the previous section, the relative slippage is mainly due to the strand rotation.

Figure 16 is a sketch showing the directions of four strands in a rope, in which a
and J are the directional angle between strand axes and the Z-axis, at the location
as shown. When the rope is stretched, both a and 8 will change as functions of
rope strain, causing relative slippage between crossing strands as well as parallel

strands. a and § are determined from:

aX.

a = arctan EYA e (75)
ay,

f = arctan (76}
9z, =Hi4

The relative slippage distance between two parallel strands outside the rope is ap-

proximately:
Jpa.rallel, outside = 2rs8in(ao - a) (77)
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Figure 16: Directions of strand axes at an intersection
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the relative slippage distance between two parallel strands inside the rope is:

5pa.rallel, inside = 2r. sin{fo — B) (78)

and the relative slippage distance between the crossing strands is given as:

bcrossing = 27s(a0 + Bo) — (e + B)] (79)

where ap and S, are the corresponding a and 3 values when rope is not stretched.

These slippage distances are plotted in Figure 17.

4 DISCUSSION AND CONCLUSIONS

A structural model for eight strand rope has besn established which describes the
geometric locations of the rope strands and the plied yarns in each strands, both at
load free state as well as when the rope is subjected to tensile stretch. Relative slip-
page between strands resulted from the geometric change is evaluated as a function
of rope sirain. Plied yarn local strains are also caculated from the geometric change
due to loading for two limiting cases: (1) assume that there is no friction between
plied yarns in a rope strand, and (2) assume that the friction between plied yarns in
a strand is sufficiently large to prevent any relative motion between adjacent plied
yarns. As these assumptions imply, strains along plied yarns for the no friction case
are constant, and they vary along the yarns for the case of no relative motion. The

average strain decreases from the core to the sublayer and to the surface layer.

Rope load vs. strain relations are determined from the plied yarn strain distri-
bution and the tensile behavior of plied yarns. S:milar tensile behavior is predicted
regardless the assumption of no friction or no relative motion. However, the rope
breaking strain or load depends on such assumption — the rope breaks at a smaller
strain (or load) for the case of no relative motion due to the strain variation in plied

yarns.
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Figure 17: Relative slippage distances between strands. (r, = 290 mm, r, = 7.5 mm,

H =120 mm, t = 2.31 turns/period, E, = 11,490 N/unit strain, u = 0.3).
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Contact pressures between strands are estimated from the rope strand forces.
Highest inter strand pressure occurs between two paralle] strands in side the rope,
and between two sets of crossing strands. These areas of high interstrand pressure
are also where significant amount of slippage between strands takes place as the
rope is stretched. Heavy abrasion at these areas is thus expected when the rope
is subjected to cyclic loads, and indeed significant abrasion can be found there in

eight strand ropes after deployment.

The rope tensile behavior is also strongly inluenced by the assumed value of
rope lateral contraction ratio, u. Until a satisfactory method of determination of
4 is found and used in the model, the results of this model can only be considered
qualitative. But nonetheless, the model can be used to study the dependency of
rope tensile behavior on other parameters and used as guideline for the design of

more efficient ropes.
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A Determination of Relative Vector ﬁ;

For the case of ¥, = 0, which means both R, and T, vectors are on the XOZ plane
and are perpendicular to the Y-axis as shown in Figure 18, ﬁ; can be directly

calculated by referring to the figure:

' R.a * ; = rp CO8 ¢
Rp: - (rP cos ¢) Iﬁal |§g| (80)
R, = rysing (81)

R' _ (r,,cosqb)R k _ X,r,cosq&

—— (82)
IRﬂl Zt‘Ra‘ .

For the general case when ¥, # 0, we first rewrite Eq 38-40 in an equivalent but

more workable form:

(Bpe)” + (Ry,) + (Rp,)* =} (83)

R X, +R.Y,+R.,Z,=0 (84)
' /] Xl =3

Rps - Rpl_z_ = !Rﬂer cos ¢ (85)

Then we can solve for R;_ and R! in terms of B, from Eq 84 and 85:

R, = |R,jr,cos ¢ + R;,? (86)

' R,, = — [?Iﬁuh cosg+ (1 + ') "] :;* (87)
Putting Eq 86 and 87 into Eq 83 yields a quadratic equation in R,,:

A(R,)*+ BR,,+C=0 ' (88)
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Figure 18: Determination of R, for the case of ¥, = 0
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with:

. 2 ~a 23\ 2
A= (i) + (u) +1
Z, Y,Z,
X, X2+ 23\ o
B = 22.—' (1 + T) |Ra|r, cos ¢
X2\ 5 3 _ 3
C=|1+ Y_f (|Re|rpcos @)’ —r;
Letting
D= +B*—4AC (89)

Ry, is readily calculated from:

-Bx D

' —
Ry, = 24

for Y, #0 (90)

if the sign before D is properly set. Determination of the sign before I} in Eq 90 is

discussed in detailed as follows.

To derive an equation for determining the sign for the determinant D in Eq 90,
we first go back to Eq 38-40 from which ﬁ;,, the relative vector between the plied
yarn position vector (ﬁ,) and the strand position vector (ff.), is to be found. It
can be seen that these equations are only the necessary conditions for determining
ﬁ;, not sufficient conditions and therefore the solution of ﬁ; to these equations is
not unique. Because of the even property of a cosine function, the mirror image
of ff:, in the same strand cross-section about the reference vector R, also satisfies
Eq 3840 as does ﬁ; The ﬁ; shown in Figure  corresponds to a positive rotation
angle ¢ (the plied yam is right-hand twisted), while its mirror image corresponds to
a negative ¢ (the plied yarn is left-hand twisted). Of course, for a given rope strand

there can only be one direction of plied yarn twist about the strand axis. In the
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rope manufacturing industry, the direction of plied yarn twist about the strand axis
is always opposite to that of strand twist about the rope axis, in order to increase
the strength efficiency and geométric stability of ropes. Since the one rope strand
picked up to model happens to be left-hand twisted about the rope axis, the plied
yarn twist, should be in right-hand direction, indicating that the relative vector I-f;
corresponding to a positive ¢ shown in Figure 6 is the one that we are interested in.
Unfortunately, both ﬁ; and its mirror image are given by the same set of equations

(Eq 86-90), and they are not easily separatable.

Figure 19 is a plot of the Z-component of ff;, (Rj,) for a plied yarn calculated
from Eq 90 when both “+” and “.” signs in the equation are used. Clearly we can
‘see that using “+” or “” sign alone in Eq 90 will not give a result that makes sense.
However, if we shift the sign before I in Eq 90 properly, we may get two smooth
curves for R, , as shown in Figure 202 and Figure 20b, directly from Figure 19.
The “shift” seems very unpredictable, but it can be shown that we can get the Z-
component of }_f;, plotted in Figure 20a, from Eq 90 if we use the following formula

to select the sign before D in that equation:
Y,(z)
Sign = (-1)™H = (91)
7. (2)|
where m = [¢/x], the integer part of ¢/7x. The sign is just the opposite for the
mirror image of ﬁ; (Figure 20b). Although the derivation of Eq 91 is not simple,
one can easily prove it by plotting the components of }-?;’, for each plied yarn using

this rule to see whether the resulting R’; is a smooth function of position parameter

z.

Once the sign for D in Eq 90 is found, the three components of ﬁ;, R, R,,,and
R;,, can then be obtained from Eq 86, 87, and $0. Figure 21 shows the variation of
the components of fﬁ as functions of parameter z for a plied yarn (Yarn 7 in Figure

7) right-hand twisted about the rope axis (Figure 6).
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Solid line is computed from

R}, = (—B + D)/2A and broken line from R;, = (—B — D)/2A.
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Figure 20: Two smooth curves for R,
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Figure 21: Components of E;, as a function of z
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B Adjustment of ¢,(z)

The rope load F,(z) should be constant along the rope axis. However, it is impos-
sible, and probably not nhecessary, to make the rope load P. be exactly the same in
all rope cross-sections. In order to control the load variation along the rope axis,
S€ven cross-sections within the range of 2 = 0 and z = H/2 are chosen to calculate
the rope loads (¢,(z} is assumed to be periodic with a period of H/2 in z). The
load variation is only checked for one rope strain level to increase the calculation
speed. Coefficient of variation (CV, the standard deviation divided by the average)

of rope loads in these cross-section is calculated from:

\/E :P::' - ( Pn')z
CV = n=1

n{n—1

TPa (92)

n

where P, is the rope load at i-th cross-section, n is the number of cross-sections

considered (n = 7 here}, and all the summatjons areoveri =0to ¢ = 6,

If the calculated C'V is within the range of acceptance (say, less than 3%) in-
dicating the validity of the model, complete calculation of the plied yarn strain
distribution and rope load for a range of rope strains is proceeded. Otherwise if
the CV is not acceptable, the axial strain function €a(2) is modified by adjusting
its parameters according to the currently calculated loads P,’s:

P, P,
Slaew = 150V (2 1) oy P 1) el (%)
where g; is the axial strain €a(2) at the 1-th cross-section as defined in Figure 5,
CV is the coefficient of variation of rope loads in different sections, and P. is the

average rope load.

With the modified axial strain function, loads are recaleulated and if necessary

the strain function is re-modified, until the given criterion is met. This algorithm of
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finding the axial strain function ¢,{z) has been tested for different rope parameters

to result in a rope load variation within 2% for the rope strain it based on.
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