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ABSTRACT

The tensile load-elongation behavior of eight-strand ropes has been studied by
structural modelling in which the rope tensile loac,, interstrand pressures, and strand

relative movements as functions of rope tensile strain are determined based on the

rope geometries before and after deformation.
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1 INTRODUCTION

Synthetic ropes are structures which oKer Bexibility and high tensile strength. They

are widely used in Inany applications including marine towing and mooring. With

the development of rope manufacturing technolo~, synthetic ropes are available in

many structural types. Among them, three strand twisted, double braided, and

eight strand plaited ropes are the most commonly used ones.

Eight strand pla,ited synthetic ropes have the advantages that no torque, and

thus no rotation is induced when they are stretched, by virtue of their axial sym-

metric structures.

In order to study and characterize the mechariisms of rope deterioration, and to

predict the mechanical behavior of eight strand ropes, it is necessary to develop valid

models for the eight strand ropes under different loading conditions. Such models

can provide useful information on rope construction parameters which give desired

rope mechanical behavior. As the Rrst step, the tensile load-elongation behavior

of eight-strand ropes has been studied by a structural modelling in which the rope

tensile load, interstrand pressures, and strand relative movements are determined

as functions of rope tensile strain and based on the rope geometries before and after

deformation.

2 GEOMETRY OF EIGHT-STRA.ND ROPES

2.1 Geometry of the Strand Axis

To facilitate the understanding of the structure cf eight strand ropes, a short rope

was made in the laboratory, using a small circular-cross-sectional double braided

rope for each of the eight strands. Photographs of this rope and other two com-

mercially made eight strand ropes are shown in I"igure l. By virtue of symmetry,



Figure l: Photographs of eight strand ropes.  a! A hand-made structure,  b! A

new rope,  c! A used rope



only one of the eight strands of each rope needc to be studied. In examination of

the path of a single rope strand in a load-free s".ate, it was noted that the projec-

tions of the strand axis on two perpendicular planes closely follow the wave form

of sinusoidal curves, as illustrated in Figure 2. The sine waves on the two planes,

XOZ and YOZ planes, both have the same period, but with different magnitudes

and phase shifts. For the coordinates selected in Figure 2, the strand path for an

unstretched eight-strand rope can be represented as:

2s. Z, + B!
X, = X,sin

27rz.
Y,=Y .cos

H �!

BX, 2~
with tan a = ' = � X

8Z,g ~ H

R,

sin a

where r, is the radius of the strand.

When a rope is stretched at the two ends, th» rope structure must adjust itself

to satisfy two constraints:

~ The boundary condition: the rope length rzultiplied by the rope strain must

be equal to the rope stretch length; and

~ The equilibrium condition: the total strand force components in the axial

direction of the rope must remain constant along the rope.

As can be expected, when the rope is stretched the strand path functions be-

come very complicated and may no longer be represented by the simple sinusoidal

where H is the length of one period of rope, X �Y, are the maximum magnitude

of X, and Y�and 8 is the phase shift for X�which can be estimated from Figure



Figure 2: Geometry of rope strand axis
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functions. One method of describing the stretched strand path is to use Fourier

series representations, given as:

X, = /  B>sin kAZ,! + Cccos kAZ,!! �!

Y, = [Dq sin kAZ,! + Zq cos I :AZ,! j
k=0

where A, Ba, C>, D>, and Ea  k = 0, 1, 2,...! are functions of the rope strain, to

be determined by the above two conditions. In practice, however, it is impossible

to use infinite series to describe the strand path in the calculation. When using the

Brst few terms in the series for X, and Y� the higher frequency terms introduce

undesirably high noise in the derivatives of X,, and Y, functions, and thus this

approach was found inappropriate.

The strand path functions used in this model are defined as follows

X, z! = X, sin
2~ z+ B!

2' z
Yk z! = Y~g cos

IZ,
= 1+ fg z! or ZI z! = [1 + f, z!]dz

dz 0

where z is the local coordinate of the strand axis fixes to the material points, and

is directly related to the global axial coordinat» Z, by Eq 8, B is the phase shift

given by Eq 3, H is the length of one period of rope at load-free state, and X~�

Y �and s  z! are explained below.

In the strand path functions, X~, and Y, are the magnitudes of the X, and

Y, waves, determined from rope radius  r�! and the strand radius  r,!, which in

turn are functions of rope strain  e,! and rope Lateral contraction ratio  p!:



Where r~ and r~ are rope and strand radii at load-free state respectively. In

Kq 12 the strand is assumed to have the same relative amount of lateral contraction

as the rope structure does, but in reality one may expect that the rope and the

strands contract diferently when stretched. Tl,e lateral contraction ratio  p! for
rope structures has been observed to be within t!xe range of 0.3 to 1,G, varying with

rope strain level and rope structures. In this model, two forms of lateral contraction

ratio expressions are used:

1. constant p: e.g.: p= 0.3, or p= 0.6;

2. p as an exponential function of rope strain:

where ~ is the initial lateral contraction ratio and ao is a constant.

c, {z! in the strand path functions  Eq 8! is the "axial strain" as a function of rope
strain  ~�! and axial position  z!. It is determin.d by the model from equilibrium

and boundary conditions. To help understand the definition of this axial strain

e, z!, we consider stretching one rope period on which some lines were drawn in the

load-free state at constant intervals  Figure 4!. In the load-free state, the parameter
z is identical to the strand axial coordinate Z,. But when the rope is stretched, the

coordinate Z, of a crosswection will change with the movement of the cross-section.

However the parameter for that cross- section will not change, as z is associated





with and will move along with the particular crees-section to it. If we measure the

new spacing between lines  Figure 4! we may express the spacing as a function of

parameter z, and therefore we can de6ne an axial strain function «, »! as:

S z! � ~ ez,«, z! = lim = � ' � 1
ao 6 dz

Integrating the above equation once gives:

S

Z, »! = [1+ «, »!]d»
0 �4!

which is Eq 8.

From the boundary condition, it is necessary that

«,H = Z, H! � H = stretch length �5!

Putting

H H
Z, H! = �+ «, »!]d» = H+ «, z!<fz

0 0

into Eq 15 gives that:

e

«, z!dz
H o

11

which indicates that the average value of the axial strain «, »! must be equal to the
rope strain.

Although the exact form of the axial strain function «, z! is determined by
the equilibrium condition, it is impossible to Gnl an analytical solution to « z!.
However, «, z! can be approximated as close by as desired.

The axial strain function «, z! used in this model is assumed to be a linear

function of rope strain and a piecewise linear function of position parameter z, as
shown in Figure S. In the expression for «, z!, ao, ai, as are constants to be
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Figure 5: Axial strain function e, z!
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dX, 2x 2z
X, - == X,�.os �  z+ a!

dz

~ dY, 2s' . 2s'
Y, = � ' = � Y,� s>n � z

dz 'H H

HZ,Z, = � ' =1+a, z!
dz

�O!

Then the derivatives of strand path functions with respect to strand axial coordinate

Z, are given from:

dX, dX, dz X,

dZ, d» dZ, Z,

dY, dY dz Y,

dZ, - dz dZ, Z, �2!

The derivative of strand length S, z! is given by:

dS, dS, dz i dS,

dZ, d» dZ, Z, d» �3!
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found  or adjusted! by the model automatically. Due to the structural symmetry

of eight-strand ropes, e, z! is a periodic function in z with a period of H/2.

The form of axial strain function a, z! shown in Figure 5 has been found to

be satisfactory for several eight-strand ropes wi'.h diferent structural parameters,

and to be a good compromise between accuracy and computational efficiency, It

is possible, however, to further improve the accuracy by dividing e, z! into more

pieces of straight lines, and by letting a,'s in e, z! be functions of rope strain instead

of being independent of rope strain  i.e. adjust iL,'s for each rope strain step!.

In this model, the derivatives of strand path functions and strand length are also

needed. First, a "dot" operation is defined wh..ch denotes taking derivative with

respect to the parameter z. Therefore



By definition, dS,/d» in above equation can be expressed in terms of X�Y�and
Zg as:

dS,
d» �4!

and the strand length as a function of the parameter» is obtained by integrating
Eq 24:

s, s! = / ' tz �5!

S, z! given by Kq 25 cannot be put in the foim of an elementary function, and
it is evaluated by numerical integration.

The tangential vector of the strand axis will >e needed to de6ne the plied yarn

path and load calculation. They are given by:

dX, dS, dS,
dZ, dZ, ' d» �6!

dY, dS, dS,
dZ, dZ, ' d» �7!

dZ. dS. dS,

dZ, dZ, dz �8!

2.2 Geometry of the Plied Yarn Axis

The location of a plied yarn at a given z  the local coordinate! can be found from

 Figure 6!:

R,=R,+R�'

14

where R�and R, are, respectively, the plied yarn path vector and the strand path

vector given by:



Figure 6: Geometry of the plied yarn axis



R = X»i+ Y»j+ Z»k �0!

R, =X,i+ Yj+Z,k �1!

and R' is the relative vector between the plied yarn and the strand axis at given z.

Because the plied yarns are twisted around the strand axis to form the strand, the

relative vector R» between a plied yarn and the strand rotates about the strand axis

as it moves along the strand axis. In other wor~ls, the direction of R' at a given z

R. j=O

and

R, T,=O �3!

Since the reference vector R, is only used to determine the starting position for

measuring the rotation angle 4, the magnitude cf R, is not important, therefore we

may choose:

�4!R�= I

16

can be determined from the plied yarn twist per period of strand, provided that the

direction of R' at z = 0 is known. It is also necessary to define a reference direction

from which the rotation angle  P! is to be measured, and then to calculate P at that

location. Unlike the case of three strand ropes where the normal vector of strand

axis pointing to the rope central axis is usually used as the reference vector, the

structure of eight-strand ropes does not allow the use of this vector as the reference

vector because it is not always pointing to the axis of the rope. In this model, a

vector is chosen which is always on the plane perpendicular to Y-axis and on the

plane of the strand cross-section, as indicated by the vector R, in Figure 6. The

constraints on R�when written in equation forms, are:



R,�� 0

Tie Xr

TJS Zg �6!

to satisfy Eq 32 and 33. Notice that the Inagnitude of R, thus defined is dimen-

sionless,

The rotation angle P can be calculated frorri the strand length S, s! and the

strand twist per period of strand  t! as:

y ~! =z« ' +y.S, s!
�7!

where Pp is the rotation angle P at s = 0 and S, .V! is the strand length per period.

From Figure 6, R', the relative vector between the plied yarn and the strand,

can be determined from the following three equations:

�8!

R' T,=o �9!

R' ~ R~ = cosP �0!

for core layer  j = 0!

for sublayer � < j < 6!

for surface layer � < j < 18!

s-R,

4sR,

17

where r� is the radius of the plied yarn helix layer. For the eight-strand ropes used

in this study, each rope strand consists of nineteen �9! plied yarns located in three

layers: the core layer, the sublayer, and the surfac.e layer. If plied yarns are assumed

to have circular cross-sections packed concentrically about the strand axis as shown

in Figure 7 and each plied yarn is identified by ar. ID number j given in that figure,

the helix radius r� is seen to be:



18ao0

eo4

Figure 7: Plied yarn packing pattern across a strand at s = 0. Yarn ID nuxnber, j,

is shown with each yarn.
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dS»
dz �7!

and therefore the plied yarn length per period ol' strand is;

�8!

The X, Y, and Z-components of plied yarn tangential vector T» to be used for
load and pressure ca.lculations are given by:

deT�= X,/
dz �aj

de7.» = >./
dz  so!

dS»
>p. = ~./

dz

3 ROPE TENSILE BEHAVIOR

3.1 Strain Distributions

When the spatial location of plied yarns as a function of rope strain is defined and

available, it is straightforward to calculate the strains across a particular strand

cross-section, or the strains along a plied yarn for some limiting cases.

In the case where the friction between plied yarns is neglected, the axial force,

and thus the axial strain, of a plied yarn must be constant along the yarn from

the consideration of equilibrium. The strain e» for a given plied yarn at rope strain

equal to c, in this case is simply given by:

Sp e,! � S~ e, = 0!
S, e�= 0!

20

where Sz is the plied yarn length per period of strand when the rope is subjected

to a strain e, as indicated in the equation.



The other limiting case is when the friction between plied yarns is so high that no

axial relative motions between plied yarns may occur, If we consider an in6nitesimal

segment of plied yarn AS» in the cylindrical coordinate pez system where

p = vX'+ Y'

and

Y
tane =�

X

we may eXpreSS AS» in termS Of e aS:

AS, = »Aeds»

d~SAS, s! � BS~ e = D! a ~,
AS, ~ =O!

dP [< p

�6!

Using Chain Rule for differentiation, we have:

dS» ds» dz dS» 1
dZ, dzdZ, d» Z,  s7j

de dedz d8 1

dZ, dzdZ, dz Z,  ss!

From Eq 54 we have:

dl d[arctan{Y,/X,! I X, Y, � X, Y,
dz dz X'+ Y,~  so!

21

where e is the e-coordinate in a pez system, or called the base angle. For the case of

no relative motion between plied yarns, the base ang1e increment Ae for the plied

yarn segment AS» will remain constant when th» rope is stretched. Therefore the

local strain for this plied yarn segment is given by:



where X, and Y, are strand. path coordinates.

Putting the expressions for X�Y�X�and Y, derived earlier into Eq 59, it can

be seen that d8/dz is a function of local coordinate z only, independent of the rope

strain e,. Therefore from Eq 57 � 59, the plied >'am strain expression Eq 56 may

reduce to simply:

�0!

3.2 Rope Load-Strain Relations

From the load-extension curve for a tensile test of plied yarns, the modulus of the

plied yarns Z» can be found as:

P

fp
�>!

where P» is the plied yarn load at strain e»,

In general, E» is a function of plied yarn strain e». Although it does not make

much difference in the complexity of a numerical model whether E» is a constant

or a complicated function of e», we will assume here that E» is a known constant in

the model.

The Z-component of the plied yarn force P» z! at a given location z can be

calculated from the local plied yarn strain e», the Z-component of the plied yarn

tangential vector T», for that yarn, and the plied yarn modulus E»:

22

Figure 8 shows the plied yarn strain variation across the strand cross-section

at z = 0, for both cases of no friction between plied yarns and no relative motion

between plied yarns. Figure 9 is an illustration of the plied strain variation along

plied yarns in diferent layers of a strand in s.n eight-strand rope.
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Figure 8: Plied yarn strain variation across the strand  r, = 29 rnm, r, = 7.5 urn,
H = 120 mm, t = 2.31 turns/period, E» = 11,4X N/unit strain, p = 0.3, s = 0,3,
e, = 0.4!
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Figure 9: Plied yarn strain variation along plied yarns  r�= 29 mm, r, = 7.5 mm,

H = 120 mm, t = 2.31 turns /period, S~ = 11,490 N/unit strain, p = 0.3, c, = 0.4,

no relative motion between plied yarns!
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P. z! =
E»~ T»,

0

For 6»   6"

for
�2!

where e" is the breaking strain of the plied yarn:.

The force in the rope axial direction of a stran 9 at z can be obtained by summing

the Z-components of all plied yarn forces in the crosswection:

P. z! = 2 P. z!
all yarns

�3!

In Eq 62 and 63, it is implicitly assumed that a plied yarn, when strained beyond

the breaking point, will not carry any load at th st location, and that the breakage

will not alter the rope structure by any means.   learly, these assumptions are not

realistic and thus limit this model to the prediction of the rope behavior only up

to the initiation of damage due to applied load/stretch. Despite this limitation, the

model covers almost the whole range of rope loading/strain of practical interest.

In order to calculate the rope load at a cross-section, we need to know the strand

forces in the rope axial direction in that cross-section for all the eight strands. By

symmetry, at a cross-section there are four strar<d pairs in each of which the two

strands have the same strain distribution and th. 'same load. By symmetry again,

we can Bnd the corresponding locations in the strand we have considered for the

four diFerent, strands in the cross-section. The rcpe load P, z! is then given by:

H HP~ z! 2[P~ z! + Pj z + B! + Pg z + ! + +Pg{z + � � B!j

where B is the phase shift de6ned in Eq 3, and H is the rope length per period of
strand.

As mentioned earlier, the rope load P, z! should be constant along the rope

axis. In this model, this equilibrium condition is satis6ed by proper adjustment oF

the strand axial strain function, a, z!. Details o' .this adjustment are provided in

25



Appendix B. Figure ID and Figure 16 show the load vs. strain characteristics of
an eight-strand rope based on three assumed lateral contraction ratios: p = 0.3,
p = 0.6, and p = 0.3[1 + ezp  � c,/0.2!I, for both cases of "no friction" and "no
relative motion".

S.S Inter-Strand Pressures

are only interested in certain locations in the rope where high inter-strand pressure
is expected. From the rope geometry  see Figur<. I and Figure 2!, it is easily seen
that the maximum inter-strand pressure occurs near the region where the bending
curvature is maximum  i.e. z = 0, H/2, B, ....j. [n order to estimate this pressure,
we Grst consider a segment of strand between z = I/4H and z = 3/4H, and
determine the resultant force of external pressures on this strand segment, when
the rope is stretched. Figure 11 shows the free body diagram of the strand segment
under consideration, in which R is the resultant force of pressures exerted on the
segment, and Ei and Fq are strand forces at z = 1./4H and z = 3/4H respectively.
Force equilibrium requires that:

R+ E>+ F> �� 0
{6S!

 «j

26

The spatial con6guration of a strand in an eight-s'!rand rope is not in self-equilibrium
state, and is supported by other strands via contact stresses, The contact stress,
or the inter-strand pressure, is responsible to a great extent for the rope internal
abrasion which shortens the life of eight-strand ropes considerably.

Due to the complexity of the structure of eight-strand ropes, it is very difficult
to determine the pressure 6eld in an eight-strand rope. However, in most cases we
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Figure 10: Tensile load vs. strain relationship of eight strand rope  r, = 29 mxxx,

r, = 7.5 rnxn, H = 120 xnxn, t = 2.31 turns/period, E~ = 11,490 Nt'unit strain!.
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Figure 11: Free body diagram of a strand segment for determination of resultant

contact force R
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� g = Fg�+ Fg� �7!

Rg = Fgg + Fgs �8!

In Eq 66, F<� the x-component of the strand force at s = 1/4H, can be cal-
culated directly from the plied yarn strains  a~!, plied yarn modulus  E~!, and the
x-component of the local tangential vector of plied yarn path  T~,!:

Ft- yarns in strand �9!

Similar expressions like Eq�8! can be obtained for other components of Ft and F2.
From the contact force R, the contact pres.ure can be calculated if the contact

area and the compressive properties of the st:..and are known, For two isotropic
elastic cylinders contacting each other at an angle, the contact area will be an
ellipse and the maximum pressure occurs at the center of contact which equals to

1.5P
P=

xa6 �0!

where P is the contact  applied! force,  xa6! is the contact area with a and 6 being
the minor and major axes of the ellipse.

From the geometry of eight-strand structure, it can be seen that the y-component
of the resultant force R is primarily supported by the two strands crossing under
the strand segment being considered. The contact area is measured from a new rope
as approximately a = 0.5r�and 6 = r, where r, is the strand radius. Therefore the

maximum pressure between two crossing strands is given by:

1.5 0.5 R�
rr�.5R,! Rs �1!

29

1.5 times the average pressure. If this relationship is used to estimate the inter-
strand pressure, we will have:



Similarly it is observed that the x-component of 5, 'is mainly provided by the strand

going parallel to the strand being studied. The contact area for this force component

is larger compared with the above case and is roug]sly given by s = 0.5r, and 5 = 2r,.

Since this part of strands is on the rope surface, the pressure here will be called "the

inter-strand pressure between two parallel strands outside the rope", to distinguish

it from the pressure between two parallel strands inside the rope. The maximum

pressure between two parallel strands outside the rope is determined from:

1.5R,
>parallel, outside = ~� 5R !�R ! �2!

�3!Fcontact � � 0.5Rv ~ T»I,, SR ] Ii

Note that there are actually two strands going abo re the two strands inside the rope,

therefore the contact force is twice as large as tl:.at given by Kq 82!. If we again

assume the contact area is an ellipse with e = r, «nd 5 = 4r� then the inter-strand

pressure between two parallel strands inside the rope is:

1.5 2 0.5R�T�
parallel, inside s � 5R !�R ! �4!

The inter-strand pressures between crossing axd parallel strands are plotted in

Figure 13, Figure 14 and Figure 15 as functions of the rope strain.

30

Another region with high inter-strand pressure, as mentioned earlier, is between

two parallel strands inside the rope which support the strand analyzed above, The

contact force between two parallel strands inside the rope can be estimated by

considering a segment of strand between s = 1/4.V and 3/4H, on which the forces

have been determined, and the two strands under it. Figure 12 shows the simplified

force-equilibrium diagram, from which the contac t force due to one crossing strand

is approximately given by:
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Figure 13: later-strand pressure between crossing strands.  r, = 29 mm, r, = 7.5

mm, H = 120 mm, t = 2.31 turns/period, E~ = 11,49G N /unit strain, p = 0.3!.
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Figure 14: Inter-strand pressure between paralh.l strands outside rope.  r, = 29
mm, r, = 7,5 nun, H = 120 mm, t = 2.31 turns /period, E~ = 11, 490 N/unit strain,
p = 0.3!.
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Figure 15: Inter~trand pressure between paralle1 strands inside rope.  r, = 29 mm,

r, = 7.5 mm, H = 120 mm, f = 2.31 turns/period, E~ = 11,490 N/unit strain,

p = 0.3!.
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It can be seen that very high pressures are built up in eight-strand ropes, espe-
cially between crossing strands and between parallel strands inside the rope, which

cause severe wear damage to such rope when subjected to cyclic tensioning.

3.4 Relative Slippages between Strands

8X,
a = arctan

a=0
�5!

8Y,P = arctan � '
~ H/i

The relative slippage distance between two parallel strands outside the rope is ap-

proximately:

~parallel, outside = '  cd

35

The relative slippage distance between strands is as important as the inter-strand

pressures, as both are responsible for the internal abrasion of eight-strand ropes.

Generally the relative slippage between strands can be considered as composed of

two basic relative motions: strand sliding on each other, and strand rotation about

different pivoting points. Because of the symmetrical property of eight-strand ropes,

the slippage due to strand relative sliding is nat expected in certain rope cross-

sections. In the regions where high inter-strand pressures occur as considered in

the previous section, the relative slippage is mainly due to the strand rotation.

Figure 16 is a sketch showing the directions of four strands in a rope, in which a

and P are the directional angle between strand axes and the Z-axis, at the locs.tion

as shown. When the rope is stretched, both a and P will change as functions of

rope strain, causing relative slippage between crossing strands as well as parallel

strands. a and P are determined from:



Figure 16: Directions of strand axes at an intersection

36



the relative slippage distance between two parallel strands inside the rope is:

~parallel, inside " »n PD � P! �8!

and the relative slippage distance between the crossing strands is given as:

6crossing = 2r [�+ P0!  a+ 4!]

where a0 and Pp are the corresponding a and P values when rope is not stretched.

These slippage distances are plotted in Figure 1'l.

4 DISCUSSION AND CONCLUSIONS

A structural model for eight strand rope has be.'n established which describes the

geometric locations of the rope strands and the plied yarns in each strands, both at

load free state as well as when the rope is subjected to tensile stretch. Relative slip-

page between strands resulted from the geometric change is evaluated as a function

of rope strain. Plied yarn local strains are also ca,culated from the geometric change

due to loading for two limiting cases:  I! assume that there is no friction between

plied yarns in a rope strand, and �! assume that the friction between plied yarns in

a strand is sufficiently large to prevent any relative motion between adjacent plied

yarns. As these assumptions imply, strains along plied yarns for the no friction case

are constant, and they vary along the yarns for the case of no relative motion. The

average strain decreases froIn the core to the sublayer and. to the surface layer.

Rope load vs. strain relations are determinect from the plied yarn strain distri-

bution and the tensile behavior of plied yarns. S.'.milar tensile behavior is predicted

regardless the assumption of no friction or no relative motion. However, the rope

breaking strain or load depends on such assumption � the rope breaks at a smaller

strain  or load! for the case of no relative motion due to the strain variation in plied

yarns.
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Figure 17: Re/ative slippage distances between strands.  r, = 29 mm, r, = 7.5 mm,

H = 120 mm, t = 2.31 turns/period, E~ = ll,41! N/unit strain, p = 0.3!.



Contact pressures between strands are estimated from the rope strand forces.

Highest inter strand pressure occurs between two parallel strands in side the rope,

and between two sets of crossing strands, These areas of high interstrand pressure

are also where signi6cant amount of slippage between strands takes place as the

rope is stretched. Heavy abrasion at these areas is thus expected when the rope

is subjected to cyclic loads, and indeed signi6cajit abrasion can be found there in

eight strand ropes after deployment.

The rope tensile behavior is also strongly inEuenced by the assumed value of

rope lateral contraction ratio, p. Until a satisfa:tory method of determination of

p is found and used in the model, the results of 1;his model can only be considered

qualitative. But nonetheless, the model can be used to study the dependency of

rope tensile behavior on other parameters and used as guideline for the design of

more efficient ropes.
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Figure 18: Determination of R� for the case of Y, = 0
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X, X,'+ Z,'B = 2 �,' 1+ ', ' ~R ~r�cos4
Z Y

X~
C = 1+ �.'  IR,~rp cos P! � r

Letting

 89!

R', is readily calculated from:

-BkD
R',= for Y, j0

2A
 90!

if the sign before D is properly set. Determination of the sign before D in Kq 90 is

discussed in detailed as follows.

To derive an equation for determining the sign for the determinant D in Eq 90,

we first go back to Eq 38-40 from which R', tl:.e relative vector between the plied

yarn position vector  R j and the strand position vector  R,j, is to be found, It

can be seen that these equations are only the necessary conditions for determining

R', not suKcient conditions and therefore the solution of R' to these equations is

of R' in the same strand cress-section about the reference vector R, also satis6es

Eq 38-40 as does P. The R~ shown in Figure ti corresponds to a positive rotation

angle P  the plied yarn is right-hand twisted!, while its mirror image corresponds to

a negative P  the plied yarn is left-hand twisted,'~. Of course, for a given rope strand

there can only be one direction of plied yarn twist abo~t the strand axis. In the
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not unique. Because of the even property of a cosine function, the mirror image



rope manufacturing industry, the direction of pl:,ed yarn twist about the strand axis

is always opposite to that of strand twist about the rope axis, in order to increase

the strength eKciency and geometric stability of ropes. Since the one rope strand

picked up to model happens to be left-hand twIsted about the rope axis, the plied

yarn twist, should be in right-hand direction, indicating that the relative vector Rz
corresponding to a positive P shown in Figure 6 is the one that we are interested in.

Unfortunately, both R' and its mirror image ar» given by the same set of equations

 Eq 86-90!, and they are not easily separatable.

Figure 19 is a plot of the Z-component of Flp  Rp ! for a plied yarn calculated

from Kq 90 when both "+" and "-" signs in the equation are used. Clearly we can

see that using "+" or - sign alone in Eq 90 wilt not give a result that makes sense.

However, if we shift the sign before D in Eq 9t:I properly, we may get two smooth

curves for R',, as shown in Figure 20a and F:.gure.20b, directly from Figure 19.

The 'shift" seems very unpredictable, but it can be shown that we can get the Z-

component of R', plotted in Figure 20a, from E g 90 if we use the following formula

to select the sign before D in that equation:

Sign =   � 1! , V, s!
l~.  <! I

 91!

where m = [4/sI, the integer part of P/s. The sign is just the opposite for the

mirror image of R'  Figure 20b!. Although th» derivation of Eq 91 is not simple,

one can easily prove it by plotting the components of g for each plied yarn using

this rule to see whether the resulting R' is a smimth function af position parameter

Once the sign for D in Kq 90 is found, the three components of R', R'�R', and

R'�can then be obtained from Eq 86, 87, and 90. Figure 21 shows the variation of

the components of P as functions of parameter s for a plied yarn  Yarn 7 in Figure

7! right-hand twisted about the rope axis  Figure 6!.

43



o

H/4

Figure 19: R', as determined from Eq 90. Solid line is computed from

R', =  -8 + D!/2A and broken line from R', =   � B � D!/2A.
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Figure 20: Two sznooth curves for R',
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Figure 21: Components of R' aa a function of z



B Adjustment of c, z!

The rope load P, z! should be constant along the rope axis. However, it is impos-
sible, and probably not necessary, to make the rope load P, be exactly the same in
all rope cross-sections, In order to control the load variation along the rope axis,
seven cross-sections within the range of z = 0 and z = H/2 are chosen to calculate
the rope loads  z, z! is assuzned to be periodi with a period of H/2 in z!. The
load variation is only checked for one rope strain level to increase the calculation
speed. CoeScient of variation  CV, the standard deviation divided by the average!
of rope loads in these cross-section is calculated from:

 92!
CV

where P� is the rope load at i-th cross-section, n is the number of cross-sections
considered  e = 7 here!, and all the summations are over i = 0 to i = 6.

If the calculated CV is within the range of acceptance  say, less than 3%! in-
dicating the validity of the model, complete calculation of the plied yarn strain
distribution and rope load for a range of rope .«trains is proceeded. Otherwise if
the CV is not acceptable, the axial strain function e, z! is modifie by adjusting
its parameters according to the currently calculated loads P�'s:

P, P,~+SCV  � ' � ~!+CV  � '- � ~! ~ahold
ti r i-1 !  »!
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where a; is the axial strain e, z! at the i-th cross-section as deflned in Figure S,
CV is the coefBcient of variation of rope loads in diferent sections, and P, is the
average rope load.

With the modifled axial strain function, loads are recalculated and if necessary
the strain function is re-modifled, until the given criterion is met. This algorithm of



Gnding the axial strain function e,{z! has been tested for diferent rope parameters

to result in a rope load variation within 2% for the rope strain it based on.
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